The primary purpose of the core facility is to support MUSC investigators in the characterization of metabolites and bioenergetics fluxes related to oxidants, intracellular redox, and primary energy metabolism. We are fulfilling these purposes via:
- Development bioenergetic profiling technologies that can assess continuous, “real-time” changes in bioenergetic metabolism due to perturbations caused via signaling triggered with pharmacological agents and disease states.
- Provide bioenergetic profiles of cells, tissues, and/or mitochondria following genetic manipulations (CRISPER/Cas9, shRNA, etc.) or drug treatments used to evaluate mechanistic hypotheses.
- Provide bioenergetic profiles of cells, tissues, spheroids, organoids, vertebrate models (e.g., zebrafish, nematodes, trypanosomes, etc.) and/or mitochondria to query substrate utilization and/or signaling to test hypotheses related to pathobiology.
Recent Publications
Richards, D. J., Li, Y., Kerr, C. M., Yao, J., Beeson, G. C., Coyle, R. C., Chen, X., Jia, J., Damon, B., Wilson, R., Starr Hazard, E., Hardiman, G., Menick, D. R., Beeson, C. C., Yao, H., Ye, T., & Mei, Y. (2020). Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nature biomedical engineering, 4(4), 446–462. https://doi.org/10.1038/s41551-020-0539-4
Chakraborty, P., Vaena, S. G., Thyagarajan, K., Chatterjee, S., Al-Khami, A., Selvam, S. P., Nguyen, H., Kang, I., Wyatt, M. W., Baliga, U., Hedley, Z., Ngang, R. N., Guo, B., Beeson, G. C., Husain, S., Paulos, C. M., Beeson, C. C., Zilliox, M. J., Hill, E. G., Mehrotra, M., … Mehrotra, S. (2019). Pro-Survival Lipid Sphingosine-1-Phosphate Metabolically Programs T Cells to Limit Anti-tumor Activity. Cell reports, 28(7), 1879–1893.e7. https://doi.org/10.1016/j.celrep.2019.07.044
Cameron, R. B., Peterson, Y. K., Beeson, C. C., & Schnellmann, R. G. (2017). Structural and pharmacological basis for the induction of mitochondrial biogenesis by formoterol but not clenbuterol. Scientific reports, 7(1), 10578. https://doi.org/10.1038/s41598-017-11030-5
Ishii, M., Beeson, G., Beeson, C., & Rohrer, B. (2019). An improved method for isolation of mitochondria from cell lines that enables reconstitution of calcium-dependent processes. Analytical biochemistry, 577, 52–58. https://doi.org/10.1016/j.ab.2019.04.012
Christie, C. F., Fang, D., Hunt, E. G., Morris, M. E., Rovini, A., Heslop, K. A., Beeson, G. C., Beeson, C. C., & Maldonado, E. N. (2019). Statin-dependent modulation of mitochondrial metabolism in cancer cells is independent of cholesterol content. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33(7), 8186–8201. https://doi.org/10.1096/fj.201802723R
Il'yasova, D., Kinev, A., Grégoire, R., & Beeson, C. C. (2019). A Cell-Based Approach to Study the Associations Between Mitochondrial Health, Early Life Exposures, and Consequent Health Outcomes. Frontiers in public health, 7, 36. https://doi.org/10.3389/fpubh.2019.00036
Qie, S., Yoshida, A., Parnham, S., Oleinik, N., Beeson, G. C., Beeson, C. C., Ogretmen, B., Bass, A. J., Wong, K. K., Rustgi, A. K., & Diehl, J. A. (2019). Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Nature communications, 10(1), 1296. https://doi.org/10.1038/s41467-019-09179-w
Cameron, R. B., Gibbs, W. S., Miller, S. R., Dupre, T. V., Megyesi, J., Beeson, C. C., & Schnellmann, R. G. (2019). Proximal Tubule β2-Adrenergic Receptor Mediates Formoterol-Induced Recovery of Mitochondrial and Renal Function after Ischemia-Reperfusion Injury. The Journal of pharmacology and experimental therapeutics, 369(1), 173–180. https://doi.org/10.1124/jpet.118.252833
Jing, R., Corbett, J. L., Cai, J., Beeson, G. C., Beeson, C. C., Chan, S. S., Dimmock, D. P., Lazcares, L., Geurts, A. M., Lemasters, J. J., & Duncan, S. A. (2018). A Screen Using iPSC-Derived Hepatocytes Reveals NAD+ as a Potential Treatment for mtDNA Depletion Syndrome. Cell reports, 25(6), 1469–1484.e5. https://doi.org/10.1016/j.celrep.2018.10.036
Chatterjee, S., Chakraborty, P., Daenthanasanmak, A., Iamsawat, S., Andrejeva, G., Luevano, L. A., Wolf, M., Baliga, U., Krieg, C., Beeson, C. C., Mehrotra, M., Hill, E. G., Rathmell, J. C., Yu, X. Z., Kraft, A. S., & Mehrotra, S. (2019). Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clinical cancer research : an official journal of the American Association for Cancer Research, 25(3), 1036–1049. https://doi.org/10.1158/1078-0432.CCR-18-0706
Gibbs, W. S., Collier, J. B., Morris, M., Beeson, C. C., Megyesi, J., & Schnellmann, R. G. (2018). 5-HT1F receptor regulates mitochondrial homeostasis and its loss potentiates acute kidney injury and impairs renal recovery. American journal of physiology. Renal physiology, 315(4), F1119–F1128. https://doi.org/10.1152/ajprenal.00077.2018
Herr, D. J., Baarine, M., Aune, S. E., Li, X., Ball, L. E., Lemasters, J. J., Beeson, C. C., Chou, J. C., & Menick, D. R. (2018). HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. Journal of molecular and cellular cardiology, 114, 309–319. https://doi.org/10.1016/j.yjmcc.2017.12.004
Chatterjee, S., Daenthanasanmak, A., Chakraborty, P., Wyatt, M. W., Dhar, P., Selvam, S. P., Fu, J., Zhang, J., Nguyen, H., Kang, I., Toth, K., Al-Homrani, M., Husain, M., Beeson, G., Ball, L., Helke, K., Husain, S., Garrett-Mayer, E., Hardiman, G., Mehrotra, M., … Mehrotra, S. (2018). CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell metabolism, 27(1), 85–100.e8. https://doi.org/10.1016/j.cmet.2017.10.006
Gibbs, W. S., Garrett, S. M., Beeson, C. C., & Schnellmann, R. G. (2018). Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis. American journal of physiology. Renal physiology, 314(2), F260–F268. https://doi.org/10.1152/ajprenal.00324.2017
Trager, N. N. M., Butler, J. T., Harmon, J., Mount, J., Podbielska, M., Haque, A., Banik, N. L., & Beeson, C. C. (2018). A Novel Aza-MBP Altered Peptide Ligand for the Treatment of Experimental Autoimmune Encephalomyelitis. Molecular neurobiology, 55(1), 267–275. https://doi.org/10.1007/s12035-017-0739-4
Cameron, R. B., Peterson, Y. K., Beeson, C. C., & Schnellmann, R. G. (2017). Structural and pharmacological basis for the induction of mitochondrial biogenesis by formoterol but not clenbuterol. Scientific reports, 7(1), 10578. https://doi.org/10.1038/s41598-017-11030-5
Thaxton, J. E., Wallace, C., Riesenberg, B., Zhang, Y., Paulos, C. M., Beeson, C. C., Liu, B., & Li, Z. (2017). Modulation of Endoplasmic Reticulum Stress Controls CD4+ T-cell Activation and Antitumor Function. Cancer immunology research, 5(8), 666–675. https://doi.org/10.1158/2326-6066.CIR-17-0081
Bioenergetics Services
The bioenergetics unit has about 400 square feet of dedicated laboratory space in DDB with three dedicated XF96 instruments. The tissue culture facility within the core contains the Satorius “ZOOM” microscope contained in a 37°C incubator and EVOS 5000 fluorescent/bright field microscope. Further equipment includes a Nano-dropTM 8000 spectrophotometer, a VIA Flow semi-automated pipetting system to facilitate high throughput pipetting, a Fluoroskan-Ascent Fluorescent plate reader and various multichannel pipettes and support equipment.
Available Assays
- Mito Stress
- Phenotype
- Glycolytic Stress
- Glycolytic Rate
- ATP Rate
- Mito Fuel Flex
- Palmitate/BSA assay
- Plasma membrane/mitochondria
- Mitochondrial Stress Assay
- Cell tracking and counting
- Cell health and apoptosis
- Cell imaging over extended times